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Abstract

We consider the Saint-Venant torsion of a cylindrical rod of a circular cross section which is filled up by an as-

semblage of composite circular cylinders. The constituent cylinders consist of a core and a coating both of which are

cylindrically orthotropic with the volume fraction of the core being the same in every composite cylinder. The described

microstructure is the composite cylinder assemblage of Hashin and Rosen [J. Appl. Mech. 29 (1964) 143] which is now

subjected to torsion. The main results are (a) the warping function on the lateral surface of the host rod is zero, (b) an

exact expression for the torsional rigidity of the host rod is derived which depends on the size distribution of the

composite cylinders but not on their position and (c) there are two circumstances in which the torsional rigidity becomes

size distribution independent: The first one is that in which the sizes of the composite cylinders are much smaller than

the size of the host rod; the second one is that in which a certain specific relation holds between the properties of the

composite cylinder and the volume fraction of the core. If the coating disappears and the core is cylindrically ortho-

tropic, we get the configuration of a polycrystalline rod. Simple bounds for the torsional rigidity of the constructed

composite rod are obtained.
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1. Introduction

Although the Saint-Venant torsion problem of cylindrical bars is a classical one in the field of elasticity,

there has been recently a growing interest in it specially in the context of inhomogeneous and/or anisotropic

bars (see for example, Nazarov, 1995; Rooney and Ferrari, 1995; Horgan and Chan, 1999; Lipton, 1998;

Ting, 1999; Chen, 2001; Tarn, 2001; Wineman, 2001; Benveniste and Chen, 2001; Chen et al., 2002). The
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present paper is a contribution to the existing exact benchmark solutions of inhomogeneous cylindrical

bars. The considered microgeometry in the cylindrical bar is the renowned composite cylinder assemblage

(CCA) of Hashin and Rosen (1964). This microgeometry was aimed at modeling the effective behaviour of

fiber reinforced composites and served also to show the realizability of some of the Hill (1964) and Hashin
(1964) bounds for fibrous composites. It consists of two phase composite cylinders of circular cross sections

and of all sizes which fill up the whole space, with the volume fraction of the core being the same in all

composite cylinders. The original formulation assumed that every composite cylinder consists of an iso-

tropic core and coating, but was later extended to the case of transversely isotropic constituents (Hashin,

1972, 1979), as well to constituents with cylindrical orthotropy (Hashin, 1990). For a comprehensive survey

of this microgeometry and several generalizations of it, see Chapter 7 in the recent book of Milton (2002).

In the circular rod considered here which is filled up with the CCA microgeometry each composite

cylinder consists of a core and coating which are cylindrically orthotropic. This highly inhomogeneous rod
is now subjected to Saint-Venant torsion and the resulting displacement field in it as well as its torsional

rigidity are sought. The solution to this problem for the case in which the core and coating are isotropic has

been recently given by the authors, Chen et al. (2002). That solution was part of an extensive study in which

the existence of so-called ‘‘neutral inhomogeneities’’ was explored in torsion problems. A neutral inhomo-

geneity was defined in that work as one which does not disturb the vanishing warping field in a host circular

bar in torsion, and possibly leaves its torsional rigidity unchanged as well. Here we concentrate exclusively

on a cylindrical bar with the CCA microgeometry in torsion, and generalize the solution in Chen et al.

(2002) to the case in which the constituents are cylindrically orthotropic. We find it remarkable that al-
though the CCA microgeometry is now almost half a century old, to the best knowledge of the authors,

these solutions to the Saint-Venant torsion of a cylindrical bar filled up with this microgeometry have not

been given in the literature until now.

The paper is structured as follows: in Section 2 we present a brief summary of our main results. These are

(a) the warping displacement vanishes at the lateral surface of a cylindrical and circular rod which is filled

up with the CCA microgeometry, (b) the torsional rigidity of this bar is given by a simple expression which

is independent on the position of the composite cylinders but is dependent on their size distribution and (c)

there are two circumstances in which the torsional rigidity becomes size distribution independent: The first
one is that in which the sizes of the composite cylinders are much smaller than the size of the host rod; the

second one is that in which a certain specific relation holds between the properties of the composite cylinder

and the volume fraction of the core. In Section 3 we present the derivation which is analytical and

straightforward. This section contains also the proof of a correspondence between the Saint-Venant torsion

problem and an anti-plane shear problem of the same geometry, a correspondence which is valid only for

the case of a circular cylindrical inhomogeneity in a circular rod. In Section 4 we study in detail the tor-

sional rigidity of the rod which is filled up with the CCA microgeometry. As indicated above, since the

torsional rigidity is dependent on the size distribution of the constituent composite cylinders, the question
of possible size distributions which result in a maximum or minimum torsional rigidity becomes a relevant

one. We show that some simple answers to this question exist in certain circumstances.

Our concern in the present paper has been to provide an exact analysis to the Saint-Venant torsion a

cylindrical bar with a circular cross section which is made up of a well-known microgeometry. The analysis

which is characterized by its simplicity leads to several unexpected conclusions. Some applications of the

derived results can be contemplated in the field of composites. Clearly, if the microgeometry is such that the

sizes of the composite cylinders are much smaller than the size of the host rod, the composite bar behaves in

a quasi-homogeneous manner with the effective longitudinal shear modulus of the CCA microgeometry.
Thus, the contribution of the analysis in this paper concerns circumstances in which some of the composite

cylinders which fill up the host rod are of sizes which cannot be considered to be small with the respect to

the host bar. Potential applications in the field of carbon–carbon composites (Christensen, 1994; Hashin,

1990; Herakovich, 1989) or bone mechanics (Guo, 2001; Lakes, 1995) may be envisaged.
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2. Statement of results

We consider a cylindrical bar of circular cross section which is filled up by composite cylinders of all

sizes, see Fig. 1a. Each composite cylinder consists of a core and a coating which are cylindrically or-
thotropic. The constitutive relations and the volume fraction of the core are the same in each composite

cylinder. This microgeometry is the CCA of Hashin and Rosen (1964). The circular rod consisting of this

microgeometry is now subjected to Saint-Venant torsion. We are interested in obtaining the displacement

fields and the torsional rigidity of this cylinder. A concise summary of the main results will be given in this

section and their derivation will be presented in Section 3.

We start by considering a homogeneous isotropic cylindrical bar of length L and of a circular cross

section of radius R. The shear modulus of the bar is denoted by lðmÞ. Locate a Cartesian coordinate system

(X1, X2, X3) centered at one end of the bar and let its origin coincide with the center of the circular cross
section. Let X3 be the axial coordinate. The bar is subjected to end torsional moments which result in the

following displacement field in it:
u1 ¼ �#X3X2; u2 ¼ #X3X1; u3 ¼ 0; ð2:1Þ
where # is the angle of twist per unit length. Let us now introduce a composite cylinder in the bar. The

radius of the core is denoted by b, and the outer radius of the coating by a. Let the axis of the composite

cylinder be positioned at X1 ¼ a0, X2 ¼ 0. At the center of the composite cylinder define a Cartesian co-
ordinate system (x1, x2, x3) and a polar coordinate system (r, h, x3), see Fig. 1b. The core and the coating are

cylindrically orthotropic with their constitutive law being given by
rðaÞ
3r ¼ 2lðaÞ

r eðaÞ3r ; rðaÞ
3h ¼ 2lðaÞ

h eðaÞ3h ; a ¼ 1; 2; ð2:2Þ
where a ¼ 1 denotes the coating and a ¼ 2 the core; (r3r, r3h) are the shear stresses active in Saint-Venant

torsion; and (e3r, e3h) are the corresponding strains; (lðaÞ
r , lðaÞ

h ) denote the shear moduli characterizing cy-

lindrical orthotropy. We ask the following question: ‘‘for given values of a0, a, b, lðaÞ
r , lðaÞ

h , is there a specific

shear modulus ~llm of the host bar for which the displacement field in it remains undisturbed and continues

to be given by (2.1)?’’ It turns out that the answer to this question is positive and consists of
lðmÞ ¼ ~llm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð1Þ
r lð1Þ

h

q
gð1þ ck1Þ þ ð1� ck1Þ
gð1� ck1Þ þ ð1þ ck1Þ ; ð2:3Þ
R

R
x2

x1
X1

X2

b

r

a
a0

(a) (b)

θ

Fig. 1. (a) The composite cylinder assemblage microgeometry. (b) A coated circular inhomogeneity in a circular bar.
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where
g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð2Þ
r lð2Þ

h

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð1Þ
r lð1Þ

h

q ; c ¼ b2=a2; k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð1Þ
h =lð1Þ

r

q
: ð2:4Þ
Remarkably so, this result is independent on the location a0 of the cylindrical inhomogeneity. Surprisingly
as well, it coincides with that given by Hashin (1990) for the effective longitudinal shear modulus of the

CCA microgeometry. The reason for this coincidence will be explained in Section 3 which is mainly devoted

to the derivation of (2.3). From the nature of the solution, the warping field vanishes at the outer boundary

r ¼ a of the coated inhomogeneity. Such inhomogeneities which leave the displacement field undisturbed in

the host bar are called ‘‘partially neutral inhomogeneities’’. A ‘‘fully neutral inhomogeneity’’ is one that

leaves the torsional rigidity of the host bar undisturbed as well, see Chen et al. (2002).

In Section 3 it is shown that the torsional rigidity of the bar which contains now the partially neutral

inhomogeneity is given by
T=# ¼ ðp=2Þf~llmðR4 � a4Þ þ lð1Þ
h a4ð1� c2Þ þ lð2Þ

h a4c2g: ð2:5Þ
Again, most remarkably so, this expression is independent of the location of the composite cylinder in the

host bar!

The fact that (2.3) is independent of a0 allows us to introduce several composite cylinders in the host bar

at arbitrary locations without disturbing the displacement field in it. Note that, in principle, the properties

of the core and coating and the volume fraction c may vary from one composite cylinder to the other but
they need to be constrained by the same expression (2.3). For simplicity however, we assume in this paper

only one type of composite cylinders characterized by its parameters c ¼ ðb=aÞ2, lðaÞ
r , lðaÞ

h . The host rod can

be filled up by such composite cylinders so as to have the matrix to disappear completely, resulting thus in

the CCA microgeometry. Note that since no matrix material being left now, the question of the shear

modulus of the host matrix becomes irrelevant. Of course, the shear moduli of the constituents and the

value of ~llm enter in the expressions for the warping function within the coated cylinders, but this warping

vanishes at the outer boundary of those cylinders, see Section 3. Since the lateral surface of the rod can be

considered to be tangent to some composite cylinder, possibly of vanishing size, we have the following
important result: In a circular bar made up of the CCA microgeometry of a single type of composite

cylinders, the warping function vanishes at the lateral surface bar, no matter what are the constituent

properties of the core and coating.

Next, let us obtain the torsional rigidity of a bar made up of a CCA microgeometry. Again, the fact that

the expression (2.5) is independent of a0 allows us to obtain the expression for the torsional rigidity for this

microgeometry just by simple summation:
T=# ¼ p~llmR
4

2
1

(
þ ðE=~llmÞ

X1
i¼1

ðai=RÞ4
)
; E ¼ lð2Þ

h c2 þ lð1Þ
h ð1� c2Þ � ~llm: ð2:6Þ
It is important to note that this derived expression for the torsional rigidity is not based on any homog-

enization assumptions, and is thus valid for any size of the composite cylinders which make up the CCA.

Except the trivial circumstance of a single composite cylinder which fills up the totality of the host rod, the

fill up process necessitates of course the use of smaller and smaller composites cylinders in certain parts of

the host rod resulting thus in an infinite number of cylinders which enter in the summation of (2.6).

The expression in (2.6) is independent on the position of the constituent composite cylinders but is

dependent on their size distribution. There are two circumstances in which size distribution independence is

achieved as well. The first circumstance is one in which the sizes of the composite cylinders are much smaller
than the size of the host rod. Under ai=R ¼ ei � 1, it can be readily shown that
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Lim
N!1
ei!0

ðT=#Þ ¼ p~llmR
4

2
: ð2:7Þ
In fact, use of the fill up condition
Lim
N!1
ei!0

XN
i

e2i ¼ 1 ð2:8Þ
together with
XN
i

e4i 6 ðMax eiÞ2
XN
i

e2i ð2:9Þ
provides
Lim
N!1
ei!0

XN
i

e4i ¼ 0: ð2:10Þ
Using this result in (2.5) leads to (2.7). In this first circumstance the composite rod behaves therefore like a

quasi-homogeneous cylinder with an effective shear modulus ~llm.

The second circumstance is when E ¼ 0, and consists of one constraint among the five parameters lðaÞ
r ,

lðaÞ
h , c. Under this condition, the torsional rigidity assumes a very simple form:
T=# ¼ pR4

2
flð2Þ

h c2 þ lð1Þ
h ð1� c2Þg: ð2:11Þ
This expression is, in fact, the torsional rigidity of one composite cylinder filling up the whole rod. It is now

of interest to study some special cases of the general results stated in this section.

2.1. A CCA microgeometry in which the composite cylinders consist of an isotropic core and an isotropic

coating

Each phase is now characterized by lðaÞ
r ¼ lðaÞ

h ¼ lðaÞ. In this case Eqs. (2.3) and (2.6) reduce to
lðmÞ ¼ l0
m ¼ ðlð2Þ=lð1ÞÞð1þ cÞ þ ð1� cÞ

ðlð2Þ=lð1ÞÞð1� cÞ þ ð1þ cÞ l
ð1Þ; ð2:12Þ

T=# ¼ pl0
mR

4

2
þ p

2

X1
i¼1

a4i flð2Þc2 þ lð1Þð1� c2Þ � l0
mg: ð2:13Þ
The condition E ¼ 0 consists now of one constraint among the three parameters lð1Þ, lð2Þ, c and is given by
lð2Þ ¼ lð1Þf1þ ð2=cÞg; ð2:14Þ

whereas the torsional rigidity becomes
T=# ¼ pR4lð1Þ

2
ð1þ 2cÞ: ð2:15Þ
Eqs. (2.12)–(2.15) reproduce those given previously by the authors, Chen et al. (2002). Note that (2.14)
implies 36lð2Þ=lð1Þ < 1, so that the circumstance of a porous composite cylinder, for example, is ruled

out.
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2.2. A microgeometry consisting of non-coated cylindrically orthotropic fibers of all sizes

This is achieved under c ¼ 1. The results are
lðmÞ ¼ l00
m ¼ ffiffiffiffiffiffiffiffiffi

lrlh
p

; T=# ¼ pl00
mR

4

2
þ p

2

X1
i¼1

a4i flh � l00
mg; ð2:16Þ
where, since the cylinder being single phase, we have omitted any subscript on the shear moduli. Size in-

dependence in the present circumstance is achieved again under ai � R, or in the situation of lh ¼ l00
m

which, in view of (2.16)1 implies the trivial case of isotropy.

Finally one may ask, for given values of the parameters lðaÞ
r , lðaÞ

h , c, what is the size distribution which

will make the torsional rigidity of the whole rod either a maximum or a minimum. We will deal with this
issue in Section 4.
3. Derivation

We start by considering one coated cylinder being introduced in the host rod (Fig. 1b). We assume that

the field (2.1) in host rod is undisturbed and write it in terms of the polar coordinate system located at the

center of the inhomogeneity:
uðmÞr ¼ #a0x3 sin h; uðmÞh ¼ #x3r þ #a0x3 cos h; uðmÞ3 ¼ 0; ð3:1Þ

In the coated cylinder we assume a displacement field in the form of:
uðaÞr ¼ #a0x3 sin h; uðaÞh ¼ #x3r þ #a0x3 cos h; uðaÞ3 ¼ #uðaÞðr; hÞ � #a0r sin h; a ¼ 1; 2: ð3:2Þ

The cylindrically orthotropic coated inhomogeneity when referred to a Cartesian system behaves in a lo-

cally monoclinic manner with variable coefficients. It is shown in Appendix A that for such systems, a

displacement field of the type (3.1) and (3.2) results in zero net end forces and in a twisting moment only.

We have found convenient to split the warping function in (3.2) in two parts, instead of representing it by a

single function as in (A.1) in Appendix A. Note that part of the field in (3.2) denoted by
u�r ¼ #a0x3 sin h; u�h ¼ #a0x3 cos h; u�3 ¼ �#a0r sin h ð3:3Þ
describes a rigid body displacement.

In the described coordinate system, the stresses in the host rod and in the composite cylinder are given by
rðmÞ
3r ¼ #lðmÞa0 sin h; rðmÞ

3h ¼ #lðmÞðr þ a0 cos hÞ;

rðaÞ
3r ¼ #lðaÞ

r

ouðaÞ

or
; rðaÞ

3h ¼ #lðaÞ
h r
�

þ 1

r
ouðaÞ

oh

�
a ¼ 1; 2:

ð3:4Þ
The equilibrium condition for the stresses in the composite cylinder is
orðaÞ
3r

or
þ rðaÞ

3r

r
þ 1

r
orðaÞ

3#

oh
¼ lðaÞ

r

o2uðaÞ

or2

�
þ 1

r
ouðaÞ

or

�
þ 1

r2
lðaÞ
h

o2uðaÞ

oh2
¼ 0; a ¼ 1; 2; ð3:5Þ
whereas the continuity conditions for the displacement and tractions at r ¼ b, r ¼ a are
uð1Þðr; hÞ
��
r¼a

� aa0 sin h ¼ 0; uð1Þðr; hÞ
��
r¼b

¼ uð2Þðr; hÞ
��
r¼b

;

lð1Þ
r

ouð1Þ

or

����
r¼a

¼ lðmÞa0 sin h; lð1Þ
r

ouð1Þ

or

����
r¼b

¼ lð2Þ
r

ouð2Þ

or

����
r¼b

:
ð3:6Þ
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Thus, the following form of solution for uðaÞðr; hÞ is admissible:
uð1Þ ¼ ðArk1 þ Br�k1Þ sin h; uð2Þ ¼ Crk2 sin h; ð3:7Þ
where we have defined ka ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðaÞ
h =lðaÞ

r

q
. The four conditions in (3.6) provide four equations for the un-

knowns lðmÞ, A, B, C. Their solution is
lðmÞ ¼ ~llm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð1Þ
r lð1Þ

h

q
gð1þ ck1Þ þ ð1� ck1Þ
gð1� ck1Þ þ ð1þ ck1Þ ; g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð2Þ
r lð2Þ

h

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð1Þ
r lð1Þ

h

q ; ð3:8Þ

A ¼ a1�k1a0fðlð1Þ
G þ ~llmÞ=ð2l

ð1Þ
G Þg; lð1Þ

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð1Þ
r lð1Þ

h

q
;

B ¼ a1þk1a0fðlð1Þ
G � ~llmÞ=ð2l

ð1Þ
G Þg; C ¼ Abk1�k2 þ Bb�k1�k2 :

ð3:9Þ
Next, let us obtain the torsional rigidity of the rod in which one composite cylinder has been introduced:
T=# ¼ T ðmÞ=#þ T ð1Þ=#þ T ð2Þ=#; ð3:10Þ
where T ðmÞ=#, T ð1Þ=#, T ð2Þ=# denote the contribution of the host rod, coating, and core of the composite

cylinder, respectively. They are given by
T ðaÞ ¼
Z
Aa

rðaÞ
3h r

2 drdh; ð3:11Þ
where Aa with a ¼ m,1,2 denote the areas of host matrix, coating and core respectively, and the moment has

been taken about the center of the inhomogeneity.

Let us first compute T ðmÞ. Noting that the stress field in the host matrix is the same as that existing in a

circular homogeneous rod, we can readily write
T ðmÞ=# ¼ ~llmpR
4

2
� ~llmpa

4

2
: ð3:12Þ
As to T ð1Þ=# and T ð2Þ=#, use of (3.4) and (3.7) provides
T ðaÞ ¼
Z Z
AðaÞ

rðaÞ
3h r

2 drdh ¼
Z Z
AðaÞ

ð#lðaÞ
h r3 þ #lðaÞ

h r2f ðaÞ cos hÞdrdh; a ¼ 1; 2; ð3:13Þ
where f ðaÞ is an expression which does not depend on the variables of integration, and drops out after the

integration due to the presence of the cos h term. Integrating, we get
T ð1Þ=# ¼ 1
2
plð1Þ

h a4ð1� c2Þ; T ð2Þ=# ¼ 1
2
plð2Þ

h a4c2: ð3:14Þ
Finally use of (3.12) and (3.14) in (3.10) produces the desired result (2.5). We remark here that if we take

moments about the center of the host bar instead of the center of the inhomogeneity, the algebra becomes

very complicated. Yet, just to verify our results we have carried out this second option as well (using

MAPLE software), and recovered of course the same equation.

We now turn to a discussion of an interesting observation on the derived expression for ~llm in (3.8). It

turns out that this expression is the same as that derived by Hashin (1990) for the effective anti-plane shear
modulus of CCA made up of cylindrically orthotropic constituents (his Eq. (28)). It will be now shown that

this coincidence is due to an underlying correspondence between the following two problems. Problem I:
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The anti-plane problem of a neutral cylindrical inhomogeneity of a circular cross section in a circular rod

(here ‘‘a neutral inhomogeneity’’ is defined as one which leaves the anti-plane field in the host rod un-

disturbed). Problem II: The Saint-Venant torsion problem of a partially neutral inhomogeneity described at

the start of this section. It is important to mention that this correspondence is valid only for the case of a
circular inhomogeniety in the host rod and will not hold, for example, if the inhomogeneity has an elliptical

cross section. Thus, this is not a universal analogy of the well-known types between the Saint-Venant

torsion and other physical phenomena. The existence of this correspondence for the case of a composite

cylinder whose constituents were isotropic was established in Chen et al. (2002). Here we show that this

correspondence is valid for the more general circumstance in which the cylindrical inhomogeneity of cir-

cular cross section is cylindrically orthotropic and inhomogeneous (a continuously graded dependence with

r) or multilayered with constant material properties in each layer. In fact, it is sufficient to show the cor-

respondence for the graded case.
We first state the governing equations in Problem I. Consider an isotropic and homogeneous cylindrical

bar of circular cross section of radius R. Let its shear modulus be denoted by lðmÞ. Define a Cartesian

coordinate system (x1, x2, x3) centered at one end of the bar and let the axis of the bar lie along x1 ¼ �a0,
x2 ¼ 0. Subject now the boundary S of the bar to a displacement field in the form:
uðmÞ1 ðSÞ ¼ uðmÞ2 ðSÞ ¼ 0; uðmÞ3 ðSÞ ¼ c0x2; ð3:15Þ
where c0 ¼ 2e023 is a constant shear strain. The following displacement and stress fields prevail in the bar:
uðmÞ1 ðx1; x2; x3Þ ¼ uðmÞ2 ðx1; x2; x3Þ ¼ 0; uðmÞ3 ðx1; x2; x3Þ ¼ c0x2; rðmÞ
32 ðx1; x2; x3Þ ¼ lðmÞc0: ð3:16Þ
Now let us introduce a cylindrical inhomogeneity of a circular cross section of radius a in the host bar, and

let its axis lie along x1 ¼ 0, x2 ¼ 0. Locate a cylindrical coordinate system (r, h, x3) whose x3-axis coincides
with that of the Cartesian system. Let the inhomogeneity be cylindrically orthotropic and exhibit a graded

dependence on r:
rðf Þ
3r ¼ 2lðf Þ

r ðrÞeðf Þ3r ; rðf Þ
3h ¼ 2lðf Þ

h ðrÞeðf Þ3h ; ð3:17Þ
where we have denoted the quantities pertaining to the inhomogeneity by ‘‘f ’’. Demand now the field
outside the inhomogeneity to remain the same after its introduction in the host bar, and ask if there is the

specific value of lðmÞ which makes this possible.

Assume the following displacement field in the inhomogeneity:
uðf Þ1 ðx1; x2; x3Þ ¼ uðf Þ2 ðx1; x2; x3Þ ¼ 0; uðf Þ3 ðx1; x2; x3Þ ¼ wðf Þðx1; x2Þ ð3:18Þ
which results in the following stresses:
r ¼ ðrðf Þ
3r ; r

ðf Þ
3h Þ ¼ lðf Þ

r ðrÞ ow
ðf Þ

or
; lðf Þ

h ðrÞ 1
r
owðf Þ

oh

 !
: ð3:19Þ
The equilibrium equation for the stresses become
orðf Þ
3r

or
þ rðf Þ

3r

r
þ 1

r
orðf Þ

3h

oh
¼ o

or
lðf Þ
r ðrÞ ow

ðf Þ

or

 !
þ 1

r
lðf Þ
r

owðf Þ

or
þ 1

r
o

oh
lðf Þ
h ðrÞ 1

r
owðf Þ

oh

 !
¼ 0 ð3:20Þ
and are accompanied by the following boundary conditions:
wðf Þ��
r¼a

¼ c0a sin h; lðf Þ
r ðaÞ ow

ðf Þ

or

�����
r¼a

¼ c0lðmÞ sin h: ð3:21Þ
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Eqs. (3.18) and (3.20) govern the problem of a neutral circular inhomogeneity in the anti-plane elasticity

context. For the case in which the inhomogeneity is made up of a core and coating which are cylindrically

orthotropic, Hashin (1990) has shown that the sought value of lðmÞ is given by (2.3). 1

Next, let us turn to Problem II. Consider the homogeneous circular bar of shear modulus lðmÞ with the
cylindrically orthotropic inhomogeneity being introduced in it, and subject it to Saint-Venant torsion. We

ask whether there is a specific value of the shear modulus lðmÞ so that the displacement field in the host bar

remains unchanged after the introduction of the inhomogeneity. This undisturbed displacement field in the

host bar is given by (3.1), and results in a stress field given at the first line of (3.4). Along the lines of Section

3, we look for a displacement field in the inhomogeneity described by
1 N

uðmÞ2 ¼
uðf Þr ¼ #a0x3 sin h; uðf Þh ¼ #x3r þ #a0x3 cos h; uðf Þ3 ¼ #uðf Þðr; hÞ � #a0r sin h ð3:22Þ
which results in a stress field:
rðf Þ
3r ¼ #lðf Þ

r ðrÞ ou
ðf Þ

or
; rðf Þ

3h ¼ #lðf Þ
h ðrÞ r

�
þ 1

r
ouðf Þ

oh

�
: ð3:23Þ
Fulfillment of the equilibrium condition requires
orðf Þ
3r

or
þ rðf Þ

3r

r
þ 1

r
orðf Þ

3#

oh
¼ o

or
lðf Þ
r ðrÞ ou

ðf Þ

or

� �
þ 1

r
lðf Þ
r

ouðf Þ

or
þ 1

r
o

oh
lðf Þ
h ðrÞ 1

r
ouðf Þ

oh

� �
¼ 0 ð3:24Þ
whereas the boundary conditions at r ¼ a necessitates
uðf Þ��
r¼a

¼ a0a sin h; lðf Þ
r ðaÞ ou

ðf Þ

or

����
r¼a

¼ a0lðmÞ sin h: ð3:25Þ
The correspondence between wðf Þ and uðf Þ in Problem I ((3.20), (3.21)) and Problem II ((3.24), (3.25))

becomes now obvious under wðf Þ () uðf Þ and c0 () a0 (note that the dimension of wðf Þ is [length] whereas

the dimension of uðf Þ is [length]2). Clearly, the above proof encompasses the case in which the inhomo-

geneity is multilayered as well.

It is important to clarify here why the above correspondence fails to hold if the cross section of the

inhomogeneity is not circular. Although this feature was already indicated in Chen et al. (2002), for the sake

of completeness, we present here a slightly different and shorter explanation. Consider for example, a two
phase inhomogeneity in which both the core and coating are isotropic. Let the inhomogeneity be of ar-

bitrary shape and denote the inner and outer boundary of the coating by the closed curves Ci and Co re-

spectively. Let the outer unit normal to these curves be defined by m and n. Locate the inhomogeneity at an

arbitrary position in the host bar, and define a Cartesian coordinate system (x1, x2, x3) at an arbitrary

location, say in the core, see Fig. 2. Let the axis of the host bar be at x1 ¼ �a0, x2 ¼ 0. The problem of

neutral inhomogeneities in the anti-plane elasticity is defined by (this problem has been studied in depth in

Milton and Serkov, 2001)
ote that the anti-plane displacement field used by Hashin allows also for a u2 component which is linear in x3: u
ðmÞ
1 ¼ 0,

ð2e023Þx3, u
ðmÞ
3 ¼ ð2e023Þx2, but yet it leads to the same ~llm.



R x2

x1
X1

X2

n
m

a0
Γo

Γi

Fig. 2. A coated inhomogeneity of arbitrary shape in a circular bar.
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uðmÞ1 ¼ uðmÞ2 ¼ 0; uðmÞ3 ðx1; x2Þ ¼ c0x2;

uðaÞ1 ¼ uðaÞ2 ¼ 0; uðaÞ3 ðx1; x2Þ ¼ vðaÞðx1; x2Þ; r2wðaÞ ¼ 0; a ¼ 1; 2;

wð1Þ��
Co

¼ ðc0x2Þ
��
Co
; lð1Þ ow

ð1Þ

on

�����
Co

¼ lðmÞc0n2;

wð2Þ��
Ci
¼ wð1Þ��

Ci
; lð2Þ ow

ð2Þ

om

�����
Ci

¼ lð1Þ ow
ð1Þ

om

�����
Ci

:

ð3:26Þ
The Saint-Venant torsion problem of the same configuration, on the other hand, is governed by (see Chen

et al., 2002)
uðmÞ1 ¼ �#x3x2; uðmÞ2 ¼ #x3ðx1 þ a0Þ; uðmÞ3 ¼ 0;

uðaÞ1 ¼ �#x3x2; uðaÞ2 ¼ #x3ðx1 þ a0Þ; uðaÞ3 ¼ #uðaÞ � #x2a0; r2uðaÞ ¼ 0; a ¼ 1; 2;

uð1Þ��
Co

¼ ðx2a0ÞjCo
; lð1Þ ouð1Þ

on

�
þ v � n

�����
Co

¼ lðmÞða0n2 þ v � nÞjCo
;

uð2Þ��
Ci
¼ uð1Þ��

Ci
; lð2Þ ouð2Þ

om

�
þ v �m

�����
Ci

¼ lð1Þ ouð1Þ

om

�
þ v �m

�����
Ci

; a ¼ 1; 2;

ð3:27Þ
where v ¼ �x2iþ x1j. Comparing (3.26) and (3.27), it become obvious that a correspondence of the nature

wðf Þ () uðf Þ and c0 () a0 is possible only if v � n ¼ v �m ¼ 0. The only instance when this is realized is that

in which the boundaries Ci and Co are circular.
4. Maximum and minimum torsional rigidities of the CCA microgeometry

As seen above, the derived torsional rigidity (2.6) for a circular bar made of the CCA microgeometry is

dependent on the sizes of the composite cylinders which fill it up. We now ask the following question:

‘‘among all the possible size distributions of composite cylinders (with given properties and volume frac-
tions of the core and coating) which one makes the torsional rigidity of the bar a maximum, and which one
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makes it a minimum?’’ It turns out that an inequality analysis allows to provide an answer to this question

in the following two circumstances:
ðaÞ lð1Þ
h P lð1Þ

r ; lð2Þ
h P lð2Þ

r ; lð1Þ
h lð1Þ

r P lð2Þ
h lð2Þ

r : ð4:1Þ

ðbÞ lð1Þ
h 6 lð1Þ

r ; lð2Þ
h 6lð2Þ

r ; lð1Þ
h lð1Þ

r 6 lð2Þ
h lð2Þ

r : ð4:2Þ
4.1. The case of lð1Þ
h Plð1Þ

r , lð2Þ
h Plð2Þ

r , lð1Þ
h lð1Þ

r Plð2Þ
h lð2Þ

r

The maximum torsional rigidity in this case is achieved by a single inhomogeneity which fills up the

whole bar and is given by
ðT=#ÞMax ¼
pR4

2
flð2Þ

h c2 þ lð1Þ
h ð1� c2Þg: ð4:3Þ
We need to show that
p~llmR
4

2
1

(
þ 1

~llm
ðlð2Þ

h c2 þ lð1Þ
h ð1� c2Þ � ~llmÞ

XN
i¼1

ðai=RÞ4
)
6

pR4

2
flð2Þ

h c2 þ lð1Þ
h ð1� c2Þg; ð4:4Þ
which can be cast in the form
ðlð2Þ
h c2 þ lð1Þ

h ð1� c2Þ � ~llmÞ
XN
i¼1

a4i

 
� R4

!
6 0: ð4:5Þ
First, we note that ð
PN

i¼1 a
4
i � R4Þ6 0 which follows by considering the fill up condition:
p
XN
i

a2i ¼ pR2 )
XN
i¼1

a4i ¼ R4 � 2
XN
i

XN
j 6¼i

a2i a
2
j 6R4: ð4:6Þ
Next, we need to establish
ðlð2Þ
h c2 þ lð1Þ

h ð1� c2Þ � ~llmÞP 0; ð4:7Þ
which can be cast in the following form after invoking the definition of ~llm in (2.3):
1

lð1Þ
G

flð2Þ
h c2 þ lð1Þ

h ð1� c2ÞgP ðg þ 1Þ þ ck1ðg � 1Þ
ðg þ 1Þ þ ck1ð1� gÞ ; ð4:8Þ
where all the parameters have been defined in (3.8) and (3.9). Proving the inequality (4.8) necessitates a few

steps. The first step is to prove that
g~cc2 þ ð1� ~cc2ÞP ðg þ 1Þ þ ~ccðg � 1Þ
ðg þ 1Þ þ ~ccð1� gÞ ; ð4:9Þ
where we have introduced ~cc ¼ ck1 . Some manipulation shows that the correctness of (4.9) depends on the

validity of
~cc2ð1� gÞ2 � ~ccðg2 � 1Þ þ 2ðg � 1Þ6 0: ð4:10Þ
In view of the orders of magnitudes of the parameters prevailing in this case, one has 06 ~cc6 1 and

06 g6 1. It can be readily established that under these conditions (4.10) is valid, and thus (4.9) as well.
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In the next step, we make note of the fact that if the following inequality
1

lð1Þ
G

flð2Þ
h c2 þ lð1Þ

h ð1� c2ÞgP g~cc2 þ ð1� ~cc2Þ ð4:11Þ
could be proved, then use of (4.11) and (4.9) allows the establishment of the desired main inequality (4.8).

The proof of (4.11) is achieved by casting it, after some manipulation, in the form:
lð1Þ
h F ðC; k1Þ þ lð2Þ

h GðC; k1; k2ÞP 0; ð4:12Þ
where C ¼ c2, ka ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðaÞ
h =lðaÞ

r

q
P 1, a ¼ 1,2 (in view of (4.1)), and F ðC; k1Þ, GðC; k1; k2Þ have been defined as
F ðC; k1Þ ¼ 1� C þ 1

k1
ðCk1 � 1Þ; GðC; k1; k2Þ ¼ C � 1

k2
Ck1 : ð4:13Þ
Note that F ð0; k1Þ ¼ 1� 1
k1
P 0, F ð1; k1Þ ¼ 0 and dF =dC ¼ Ck1�1 � 16 0; thus F ðC; k1ÞP 0 in the range of

interest 06C6 1 of C. The positiveness of GðC; k1; k2Þ on the other hand is readily transparent. This es-

tablishes the truth of (4.12), (4.11) and thus of the desired inequality (4.8).

Let us now prove that the minimum torsional rigidity is achieved by a CCA microgeometry with ai � R
and is given by
ðT=#ÞMin ¼
p~llmR

4

2
:

To establish this result we need to have
p~llmR
4

2
1

(
þ 1

~llm
ðlð2Þ

h c2 þ lð1Þ
h ð1� c2Þ � ~llmÞ

XN
i¼1

ðai=RÞ4
)
P

p~llmR
4

2
; ð4:14Þ
which is seen to be valid in view of the already established inequality (4.7).

4.2. The case of lð1Þ
h 6lð1Þ

r , lð2Þ
h 6lð2Þ

r , lð1Þ
h lð1Þ

r 6lð2Þ
h lð2Þ

r

The maximum torsional rigidity is now achieved by the CCA microgeometry with ai � R, and is given

by
ðT=#ÞMax ¼
p~llmR

4

2
:

This necessitates that
ðlð2Þ
h c2 þ lð1Þ

h ð1� c2Þ � ~llmÞ6 0 ð4:15Þ

or
1

lð1Þ
G

flð2Þ
h c2 þ lð1Þ

h ð1� c2Þg6 ðg þ 1Þ þ ck1ðg � 1Þ
ðg þ 1Þ þ ck1ð1� gÞ : ð4:16Þ
Similar to the development between (4.8) and (4.13), the validity of (4.16) follows from the correctness of

the following inequalities under the conditions of (4.2):
~cc2ð1� gÞ2 � ~ccðg2 � 1Þ þ 2ðg � 1ÞP 0; ð4:17Þ

1

lð1Þ
G

flð2Þ
h c2 þ lð1Þ

h ð1� c2Þg6 g~cc2 þ ð1� ~cc2Þ; ð4:18Þ

lð1Þ
h F ðC; k1Þ þ lð2Þ

h GðC; k1; k2Þ6 0: ð4:19Þ
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The minimum torsional rigidity under the conditions of (4.2) occurs by a single inhomogeneity filling up the

whole rod, and is given by the same expression as in (4.3). The proof is based on the validity of

ð
PN

i¼1 a
4
i � R4Þ6 0 and (4.15).

Finally, we make note of the fact that the conditions in (4.1) and (4.2) cover as special cases the cir-
cumstances in which the cylinders which fill up the host rod are single phase with cylindrical orthotropy,

and two phase with isotropic constituents in the core and coating.
Appendix A

Consider a cylindrical bar of arbitrary cross section containing a cylindrical inhomogeneity. Let the

lateral boundary of the bar be denoted by S and the interface between the inhomogeneity and the host bar

be denoted by C. We will assume that C is closed. Define a Cartesian coordinate system located at the end

of the bar and let x3 denote the axial direction. We assume that both the inhomogeneity and the host matrix

are locally monoclinic with (x1, x2) denoting the plane of reflectional symmetry. Under applied end torques

we assume that the displacement field in the bar are given by
uðrÞ1 ¼ �#x2x3; uðrÞ2 ¼ #x1x3; uðrÞ3 ¼ #vðrÞðx1; x2Þ; r ¼ f ;m; ðA:1Þ
where # is the angle of twist per unit length and r ¼ f denotes the inhomogeneity whereas r ¼ m denotes the

matrix. The resulting strains and stresses are
2eðrÞ13 ¼ #
ovðrÞ

ox1

�
� x2

�
; 2eðrÞ23 ¼ #

ovðaÞ

ox2

�
þ x1

�
;

eðrÞ12 ¼ eðrÞ11 ¼ eðrÞ22 ¼ eðrÞ33 ¼ 0;

rðrÞ
23 ¼ # CðrÞ

44 ðx1; x2Þ
ovðrÞ

ox2

��
þ x1

�
þ CðrÞ

45 ðx1; x2Þ
ovðrÞ

ox1

�
� x2

��
;

rðrÞ
13 ¼ # CðrÞ

45 ðx1; x2Þ
ovðrÞ

ox2

��
þ x1

�
þ CðrÞ

55 ðx1; x2Þ
ovðrÞ

ox1

�
� x2

��
;

rðrÞ
12 ¼ rðrÞ

11 ¼ rðrÞ
22 ¼ rðrÞ

33 ¼ 0;

ðA:2Þ
where CðrÞ
44 ðx1; x2Þ, CðrÞ

45 ðx1; x2Þ, CðrÞ
55 ðx1; x2Þ are the monoclinic moduli active in the present deformation

conditions, and are assumed to vary in x1 and x2.
The equilibrium condition of the stresses reads
o

ox1
rðrÞ
31 þ o

ox2
rðrÞ
32 ¼ 0; ðA:3Þ
whereas the vanishing condition of the tractions at S, and their continuity at C are
ðrðmÞ
31 n1 þ rðmÞ

32 n2ÞS ¼ 0; ðrðf Þ
31 m1 þ rðf Þ

32 m2ÞC ¼ ðrðmÞ
31 m1 þ rðmÞ

32 m2ÞC; ðA:4Þ
where n ¼ ðn1; n2Þ denotes the outer unit normal to S and m ¼ ðm1;m2Þ is the unit normal to C pointing

from the inhomogeneity into the matrix. The continuity of the displacements at C demand:
ðvðf ÞÞC ¼ ðvðmÞÞC: ðA:5Þ
It can now be shown that with vðrÞ being characterized by (A.2)–(A.5), the displacement field in (A.1) results
in vanishing forces at the ends of the bar and produces a torsional moment only. In view of the stress field

as described in (A.2), we need to establish
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Z
A
r31 dA ¼ 0;

Z
A
r32 dA ¼ 0; ðA:6Þ
where A denotes the cross section of the bar. Let us consider the first integral
Z
A
r31 dA ¼ #

X
r¼f ;m

Z
Ar

rðrÞ
31 dAr ¼ #

X
r¼f ;m

Z
Ar

o

ox1
ðx1rðrÞ

31 Þ
�

þ o

ox2
ðx1rðrÞ

32 Þ
�
dAr; ðA:7Þ
where the second equality follows by invoking (A.3). Application of the divergence theorem to (A.7) and

the consecutive use of the boundary and interface conditions (A.4) readily shows that the net force in the x1-
direction is zero. The vanishing of the second integral in (A.6) is shown in the same manner.

Since there are no transverse net forces at the ends of the bar, the resultant torques there can be
computed by taking moments of the stresses about any point of the cross section. Furthermore it can also

be established that the choice of the origin of the Cartesian system does not affect the stresses and affects the

displacement fields only within a rigid body motion. To see this property, let us chose a coordinate system

(x01, x
0
2, x

0
3) related to the first one by
x1 ¼ x01 þ a1; x2 ¼ x02 þ a2; x3 ¼ x03: ðA:8Þ
The counterpart to the displacement fields in (A.1) are
u0ðrÞ1 ¼ �#x02x
0
3; u0ðrÞ2 ¼ #x01x

0
3; u0ðrÞ3 ¼ #v0ðrÞ ðA:9Þ
or
u0ðrÞ1 ¼ �#ðx2 � a2Þx3; u0ðrÞ2 ¼ #ðx1 � a1Þx3; u0ðrÞ3 ¼ #v0ðrÞ ðA:10Þ
which results in the following non-vanishing strains and stresses:
2e0ðrÞ13 ¼ #
ov0ðrÞ

ox1

�
� x2 þ a2

�
; 2e0ðrÞ23 ¼ #

ov0ðrÞ

ox2

�
þ x1 � a1

�
;

r0ðrÞ
23 ¼ # CðrÞ

44 ðx1; x2Þ
ov0ðrÞ

ox2

��
þ x1 � a1

�
þ CðrÞ

45 ðx1; x2Þ
ov0ðrÞ

ox1

�
� x2 þ a2

��
;

r0ðrÞ
13 ¼ # CðrÞ

45 ðx1; x2Þ
ov0ðrÞ

ox2

��
þ x1 � a1

�
þ CðrÞ

55 ðx1; x2Þ
ov0ðrÞ

ox1

�
� x2 þ a2

��
:

ðA:11Þ
The stresses r0ðrÞ
31 and r0ðrÞ

32 need to satisfy
ðr0ðmÞ
31 n1 þ r0ðmÞ

32 n2ÞS ¼ 0; ðr0ðf Þ
31 m1 þ r0ðf Þ

32 m2ÞC ¼ ðr0ðmÞ
31 m1 þ r0ðmÞ

32 m2ÞC; ðA:12Þ
whereas the warping function obeys
ðv0ðf ÞÞC ¼ ðv0ðmÞÞC: ðA:13Þ
It is now easy to check that if vðrÞ is a solution of (A.2)–(A.5), then v0ðrÞ defined by
v0ðrÞ ¼ vðrÞ � a2x1 þ a1x2 ðA:14Þ
will be a solution of (A.11)–(A.13). This readily establishes that the stresses in (A.2) and (A.11) are the same

and the displacement fields differ from each other only within a rigid body motion.
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